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ON THE PLANE POTENTIAL FLOW PAST A LATTICE OF ARBITRARY AIRFOILS

By 1. E. GarrICK

SUMMARY

The two-dimensional, incompressible potential flow past a
lattice of airfoils of arbitrary shape is investigaied theoretically.
The problem 18 treated by usual methods of conformal mapping
in several stages, one stage corresponding to the mapping of
the framework of the arbitrary line lattice and another signifi-
cant stage corresponding to the Theodorsen method for the
mapping of the arbitrary single wing profile into a circle. A
particular feature in the theoretical treatment s the special
handling of the regions at an infinite distance in front of and
behind the lattice. Expressions are given for evaluation of the
velocity and pressure distribution at the airfoil boundary. An
ilustrative numerical example 18 included.

INTRODUCTION

This paper treats the problem of determining the flow pat-
tern, or the velocity and pressure fields, associated with the
uniform flow past an infinite row of symmetrically placed
airfoils of the same shape. This airfoil-lattice problem
occurs in the design of turbine blades, wind-tunnel vanes or
grids, and elsewhere. There is & purely mathematical interest
in the problem that concerns the field of conformal mapping
of infinitely connected regions. Analogous two-dimensional
“lattice” problems occur in the steady flow of heat and
electricity.

Considerable ingenuity has been devoted to the airfoil-
lattice problem, especially in the turbomachine studies in
the German literature and more recently in the British
studies; nevertheless, a survey of the available literature
indicates that nearly all the treatments employed and the
results obtained are of a special or indirect nature which
involves, for example, lattices of thin lines or approximate
graphical procedures. Recently, however, A. R. Howell in
a British paper of limited circulation has written briefly on
the theory of arbitrary airfoils in cascade. Howell applies a
special transformation to an airfoil lattice to convert the
lattice region to a somewhat random, simply connected
region and, with the aid of several stages of conformal
mapping, obtains a region about a circle.

The problem of determining the incompressible potential
flow past an arbitrary single wing section was studied by
Theodorsen (reference 1), who gave a practical procedure
for its solution. The case of two wing sections, or the
arbitrary biplane, was later treated in reference 2. The
determination of the flow past an infinite lattice of airfoils
of the same shape is a problem intermediate in difficulty in

comparison with the aforementioned ones. The treatment
for resolving this problem given in the present report is
similar to that for the arbitrary single wing section but the
calculations are more involved.

The problem will herein be studied by the usual method
of conformal mapping. If is convenient to accomplish the
result in three or four stages: The airfoil lattice is first re-
placed by its skeleton, or framework of line segments. The
initial mapping function employed transforms the lattice
skeleton into a circle. In the plane of this circle there are
two singular points, known as branch points. These points
have dual significance: They correspond to infinite regions
in front of and behind the lattice of lines, and they enter in
the problem of reducing the lattice region (multiply con-
nected region) to the region of a single body (simply con-
nected region). If now an arbitrary airfoil shape is gen-
erated or given around the framework of lines, then in the
plane of the circle a circular-like contour is generated around
the original circle. This contour may be transformed into
an exact circle by the well-known procedure given in ref-
erence 1 or 3. The original two significant points are then
traced by a transformation due to H. A. Schwarz. A final
elementary transformation will bring the circle into a stand-
ard circle for which the two characteristic branch points are
symmetrically placed. The region of this circle is considered
the standard region for determining the flow pattern.

For illustrative purposes an outline of a procedure for
calculating pressure distributions is included. The method
may be followed without reference to the.theory by readers
interested mainly in numerical results. For convenience, a
list of symbols is given in appendix A.

ANALYSIS

Initial transformation for lattice of straight lines.—Con-
sider the transformation (reference 4)

I+a2
b4z Fry
ti=gef log bizﬁlog Z (1)
=%
where g, b, and a are real numbers and d>a. Introduce
coordinates ¥ and 8 by means of the relation
2/ =ae¥t? 2
and let
—‘bi=6'70 (3)
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Equation (1) may then be expressed as

g cosh yo+-cosh (y+-i)
=27 198 | Gosh ye—cosh (¢ 1) @)

If ¢=0, according to equation (2), 2 lies on a circle of
radius ¢ (fig. 1(2)). According to equation (4), &=z,
is the logarithm of a real positive function and, consequently,
represents a real function. (its principal value) and the infinite

sequence of values differing from this function 'by Q%%ml,

where % is any integer. The transformation illustrated in
figure 1(b) is that of an infinite lattice of unstaggered lines
of gap g in the ¢;-plane into the circle of radius a in the

2’-plane. The points z'=b and 2z'=—b correspond to
infinity in front of and behind the la.ttlce, respectively. The

2
inverse points z/= ? and 2 =—% are inside the circle of

radius a.
In order to introduce stagger, it is convenient to consider
the transformation

’ (1/2

. bt 2+
b= | log 15— log —
)

where / is real. This transformation can be written with the
use of equations (2) and (3) as

ginh y,—sinh (y4-16)

2-——%

If y=0, the expression within the brackets is a complex
number of unit magnitude; hence, the logarithm is a pure
imaginary number plus an infinite sequence of numbers
differing by 2mi. Then {;=x;-+1y, represents a sequence of
real numbers differing by % and the lattice is one of hori-
zontal lines displaced from each other by & (fig. 1(c)).

The transformation for the general staggered-line lattice
is & combination of equations (4) and (5)

F=t8 (6a)
or
4 +—
r=% e log g b+ ,+e"’ log (6b)
_T
where
gap g=d cos B

stagger h=d sin B
stagger ratio %=tan B

the parameter d may be called the slant gap (fig. 1(d)),
and g the stagger angle.

The geometry of the lattice may be expressed in terms of
the parameters v, and 8 by noting that the chord length
may be obtained from the (singular or critical) values of 6
which correspond to the end points of the chord and are
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solutions of the equation %=O. This equation gives the
result

tan 6=tanh v, tan B (7a)
or, for later reference,

cos 0=cosh Yo COS 8

. . (7b)
sin 0=51nh Yo SIN B
Q
where
Q= (cosh® yo—sin? g)*

Relations (7) may be employed in two ways: (1) When the
parameters v, and 8 are given, the relation determines the
two critical values of 6, §; and 6,, where the subscripts ! and
t refer to leading edge and trailing edge, respectively, and

0,=0;+=. (2) When 6, or tan 6, and the stagger angle 8
are given, the relation determines the parameter ,.
4.8
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FIGURE 2.—Gap-chord ratlo agalnst stagger angle for varfous values of g -0

The chord ¢ may be obtained by putting =4, and §=5,
in equation (6a) and taking the difference in abscissas z; and
2;. From equations (4) to (7),

C=x,—T,;

@+cos B B
sinh +,

SmB

== (cos Blog *~—=—=sin B tan?

®

By means of equation (8), the parameter v, can be pre-
sented directly in terms of given values of the gap-chord
ratio for any stagger ratio. A 1epresenta,tive chart relating
gap-chord ratio, stagger angle, and v, is shown in ﬁgure 2;
some values are given in table 1.
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TABLE L—GAP-CHORD RATIO, PARAMETER 7, AND CORRESPONDING VALUES OF 6; FOR VARIOUS STAGGER ANGLES

o o i o B=00°;

B=0°; 6r=0 B=30 B=60 9 m90%

bfa k() sinh %, coth v
dfe dfe 8; (deg) dfe 8: (deg) dfe

1005 0. 004388 (. 004688 1. 000012 0. 26207 0.20481 0.13 0. 44157 0.50 1.00319
Lol . 009950 . 009950 1. 000050 - 20819 . 33208 .33 . 90 1. 00037
Lo2 . 019503 . 019804 1. 000196 . 34036 .37097 .66 4T 1.97 1.01277
L05 . 048700 . 048800 1.001191 - 42299 . 40845 1.61 . 65010 4.8 1. 03204
L10 . 095310 . 095456 1004545 . 51604 . 56841 3.14 JT6A7 9.35 1. 08450
L15 . 139762 . 140217 1.009783 . 58095 . 64331 4.58 . 83387 13,52 1.09732
L20 . 182322 .183333 1.016667 - 65507 .71028 504 . 80906 17.35 1. 13051
L25 . 223144 + 225000 1. 025000 . 71490 .71 7.22 . 85724 20.82 1.16400
130 . 262364 . 265385 1. 034615 . 77118 . 82820 8.42 1. 01064 23. 98 1. 19781
L36 . 300105 . 304630 1. 045370 . 82489 . 88241 9.56 1.08073 28.78 1. 23191
L.40 . 336472 . 342857 L.057143 . 87688 . 93433 10.61 110841 20,33 1. 26627
L.45 . 371564 . 380172 1. 060828 . 92604 . 88456 1158 1.15433 31.61 1. 30086
L& . 405485 . 416867 1. 083333 97599 1. 03340 12.52 1.19880 83.67 1. 33570
L.60 . 470004 . 487500 1. 112500 L07124 1.12793 14.20 1. 28505 37.20 1. 40601
1.70 . 530628 . 555882 1. 144118 1. 18362 1,21927 15.687 1.36849 40.08 1.47708
180 . 587787 . 622222 1177778 1. 25387 1. 30830 16. 96 1. 45020 42. 48 1. 56123
190 . 641854 . 686842 1. 213158 1. 34250 1. 30561 18.10 1. 530687 44,44 1.62114
20 . 608147 . 750000 L 250000 1. 42680 1 48157 19.11 1. 61036 46.10 1. 69397
5 . 916291 1. 050000 1. 450000 1.85391 1. 80894 22.69 2.00202 5L 44 2. 06407
3.0 1. 098813 1333333 1. 665687 2 26619 2. 30553 34.79 2 39240 54.18 2 44105
4.0 1386204 1. 875000 2. 125000 3.07484 3. 10588 27.00 3.17118 56. 80 3. 20605
5.0 1. 609438 400000 2. 600000 3.87402 88804 28.06 3.95163 57.98 3. 97883
10.0 2. 302585 4. 850000 5. 050000 7.82840 7.84191 20. 51 7. 86040 59,50 7.88022

Inversion of equations (4) to (8).—The initial transforma-
tions may be thought of as mapping a framework of chords
of an arbitrary lattice into a circle. If a shape is generated
around the chords in the #’-plane, a contour is generated
around the circle of radius a@. This contour, which must
exclude the pomts 2 -——b and z’=b and must enclose the

points z’'= b and 2 ——b—: may be considered to be com-

pletely defined by the function ¥ (9). If a lattice of airfoils
is preassigned, the function ¢ (6) must be found from the given
coordinates of the airfoil shape. In order not to interrupt
the sequence of main ideas, the details of this problem are
relegated to appendix B, with certain remarks on the practical

For consistency, the functional symbol ¥(¢) is here used to
denote the quantity ¢ expressed as a function of ¢—that
is, ¥[0(¢)]. In reference 3 the notations ¥(¢) and ¢[8(¢)]
are used.

It is necessary also to trace the correspondence of the
points 2'=b and 2'=—b. Let z=8§, correspond to z’'=b
and let z=—g; correspond to z’=—>b. The values B; and
B:; may be determined by a relation (due to Schwarz) that
expresses the value of a complex function in terms of an
integral of the real part of the function along & circle. A
simple derivation of the desired relation is shown in appendix
C. The expression is

achievement of a nearly circular contour. log ‘—z—,-:f(z)
Transformation of contour in 2’-plane to circle in 2z- 2
plane.—It is assumed now that the circular-like contour 1 dé
in the z’-plane which corresponds to the airfoil contour of =7z) ‘I'(¢) z 1% (12)
the lattice is either given or determined; that is, the function —g¢

¥(0) is known in the boundary expression z'=gqe**%. By
the procedure of reference 1 or 3, the transformation

The values of 8, and $; may be determined from equation
(12) by an iteration process that converges extremely

b 7' =ze/® (9a) rapidly. The process may be described as follows: In
where = 6, 2 equation (12), let the zeroth approximation to 8, be z2=2,=>b
@) =$2—u=10g = (9b) | and let the corresponding value of 2’ be written 2’/ =z,’=be/®,

and ¢, are complex coefficients determined by the boundary,
is then employed to transform the z’-contour into a circle
g=ae¥t* in the z-plane. The transformation (92) keeps
the regions alike at infinity in the z/- and z-planes; that is,

2=z and %':1 at infinity. The correspondence of the

boundaries is determined by the functional equation
=e(¢)
— 1 = 4 ¢l_‘¢ ’
L (ot ot £ ap

for which a convenient numerical solution has been outlined

in reference 3. The radius of the circle R=ae% is determined
by the relation

(10)

to=gs [ ¥e)ds an

where f(b) is the evaluation of equation (12) for z=b. It is

actually desired, however, to have 2/=b but, because
7'=z=b+2'—b

the initial value of z’ differs from the desired value by
2/ —b. Turthermore, z=z, differs from z=g, by approxi-
mately the same amount; hence, reducing z, by the quantity
2/ —b gives
z=2z+b—z/
=bH[2—e/?]

which may be considered a first approximation to 8. If it
is desired to check this result or to obtain a second approxi-
mation, the process may be repeated; thus, from equation
(12), find f(z,) and

2[’=319f(“)
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Then
’ z=z+b—z/

which is a second approximation to 8, and, in general, the
nth approximation is

Za=2y 1 b—2,y’

1t is clear that, should z, correspond to z,_;, 2,—," must cor-
respond to b and the process automatically stops. The nu-
merical process is given in appendix C; relatively elemen-
tary steps are involved. In order to determine —g., the
process is applied with b replaced by —b.

Transformation to standard oircle in w-plane.—In order
to obtain the flow pattern, it is desirable to introduce another
function which transforms the circle in the z-plane into
another circle in the w-plane in such a way that the char-
acteristic points 2= g, and z=— 8 map into w=> and w=—35,
respectively. The region of the circle in the w-plane may
be considered the standard vegion. The desired trans-
formation may be written as (see appendix D)

b—w

Bi—2
[ ﬁz+z> (13)

g5 Bpt B
b'+S* gip1—R?

where

(14)

and R=ae% is the radius of the original circle in the z-plans,
B is the complex conjugate to 8, and S is the radius of the
new circle in the w-plane. The radius S is determined by

S=be™ (15)
where v, is obtained from

cosh 71—R| B-I-ﬁz (16)

Complex velocity potential in w-plane.—Consider the flow
function Q(w)==®-1¥, which is defined as

S? St
Vd btw wtp ) gp. W 'b‘*
w)=—7_| e log y— +e“" ]og—§ log o
w-—
T
a7

The flow pattern may be regarded as due to & combination
of singularities, lsinks, sources, and vortices, placed at the

points w=4b and w==+ ST’ as indicated in figure 3. It may

F1aURE 3,—Flow singularities In standard w-plane.
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be readily verified that the circle of radius S—that is,
w=_~Se"—is part of a streamline and it may further be
observed from figure 3 that the circulation sround any

contour which encloses the points 'u7=:|:'$-b—'2 and for which

the points w==+b are exterior points is I' (positive if coun-
terclockwise). The parameter « will be interpreted later
as an angle of attack.

The value of the circulation T may he determined by
means of the Kutta-Joukowski condition for smooth flow
at the trailing edge of the lattice. Let o, be the value of &
on the boundary circle Se* that corresponds to the trailing
edge of the lattice. The Kutta-Joukowski condition then
requires that the flow separate at s=aoy, or that a stagnation
point exist there.

With :ii =0 and w=_e*", the following relation for T' is

found:

- _%[b sin (go+<) +-‘§3 sin (ao—a)] (18)

If S/b is replaced by e~ (equation (15)), equation (18) may
be expressed as

_ oS gy -
r— 2Vd(cosh%sm

Si.n O
at— B, cos a> (19)
Expressions for velocity in lattice field.—In order to obtain
the flow pattern in the lattice field (¢-plane), the component
factors of the following expression are required:

dQ_ d2dwdz dz’ (20)
dv dwdz dz’' dt a

These terms may be obtained from equations (17), (13),
(9), and (6).

It is of particular interest to evaluate equation (20)
explicitly for the regions at infinity in front of and behind
the lattice and also on the lattice boundary itself. It is
recalled that = corresponds to z’'=b, z=8,, w=> and that

=—o corresponds to 2’=—b, z=—p8,;, w=—>b. By com-
bining terms according to equation (20), the (reflected)
inlet-velocity vector is obtained as

] s

= — Veltatp) —

@1)

il 18
ﬂe

and the corresponding expression for the outlet-velocity
vector is

EIR

= — Vellatp +% e® (22)
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By addition of equations (21) and (22), it becomes clear
that the velocity vector of magnitude V and angle of attack
a-+p with respect to the z-axis is one-half the vector sum
of the inlet and outlet velocities (fig. 4).

y L

Negahve 3 | Positive ﬂ\

rd

Negative «
[

N .
Posifive o

<
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Oo‘s
&\/ N
1+

F1GURE 4.—Inlet, ontlet, and mean velocity vectors and angles of attack.

If the angle of attack of the mean velocity vector with
respect to the z-axis (chord direction) is denoted by
a;=a-+p, the velocity components in equations (21)
and (22) are

Vy=—V cos a,—l—%isin B
V,,=—V sin a,+2—I(‘i cos B

and

I .
Veg=—V cos ;57 80 B

V=V sin a;—gy cos B

The conventional angle of attack « is measured with
respect to the normal to the slant line of the lattice. The
components normal to and along the slant line of the lattice,
sometimes referred to as “axial” and ‘“whirl” components,
respectively, are found by rotating all vectors in the zy-plane

REPORT NO. 7883—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

by angle g8 (fig. 4). These components are, for the inlet

velocity,
Vay=—V cos «

. Ir
, V=V sin a—l-2—J
and, for the outlet velocity,
Vag=—V cos a=Vy,

. r
VL?=VSID 0_2‘7

The squares of the magnitudes of the inlet and outlet
velocities are

Ve=V* [1 +2:>_Pv“d sin a—I—(%i)’]

Va=V? [1—25%a sin a—l—(%)’]

where I'/2Vd may be obtained from equation (19). Observe
that the inlet and outlet speeds are equal, V;=V,, when
a=0° for any value of I'. The inlet and outlet angles of
attack with respect to the normal to the lattice line are

. T
a1=tan_1 s a+2Va
CcoS @

. T
a2=ta.n"1 sn a_2V3
COo8S

and the angle through which the stream is turned is

a—ap="tan™! ——'——1—(5%), (23)

The component factors in equation (20) are now to be
evaluated at the lattice boundary and, as the boundary
itself is part of a streamline, only the magnitudes of the
factors are of interest.

From equations (17) and (19) and with w=._Se',

2Vd 1
xS cosh 2v;—cos 2¢

%

[sinh v, sin a(cos o—co8 o)

-} cosh v, cos a(gin ¢—sin o)] (24)

where the parameter v, is defined in equation (15).
In order to obtain dw/dz, it is convenient first to express
equation (13) explicitly in w as

P E)z—b(ES — )
A—K)z+ KB T B:

A standard form for the transformation of a circular region
jz|= R into |w|= S is

(25a)

z2—6

w=RSe* fra

(25b)
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Comparison of equations (25a) and (25b) makes it clear that
the complex parameter § and the real parameter A may be
obtained from the following relations:

s EB—B

W (26&)

or, as a check relation,

. RA(E—1)
=R+ bs

S o _(1+ED
B¢ TRp+ 6,

or, by equating angles on both sides,
A=arg(1+K)—arg(KB:+ £) @7)

From equation (25b), the explicit correspondence of a point
on the circle w=_Se* to a point on the circle z=Re* can be
obtained as follows:

(26b)
and

]
R
1—pe

_d
1 Re

o == gt(e+n) (28)

Let the complex number & be expressed as [|sler and let

1— fg e ¥=me' 29)
where
2
m(8) =12 cos (p—r) -+
and
W ein (9—n)

p(¢)=tan™" ol
1—-R cos (o—7)

Observe that the denominator in equation (28) is the con-
jugate of equation (29) and is therefore equal to me=*.
There results for the correspondence of ¢ and ¢

c=¢+2\+2u (30)

In particular, if the (trailing-edge) value of ¢ that corre-
sponds to 0, as determined by equations (7) is written as
$o=0,+-¢,, Where ¢, is the value of e(¢) at §=0, from equation
(10), then

co=¢o+ N 2x
By differentiation of equation (255),

dw_ RS(B!—g5)e>

& @) (31

On the boundary, put z=Re*; then, the magnitude of

equation (31) is
[z (%) @)
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The expression for %l on the boundary is obtained from

equation (9) in terms of the functions e(¢) and ¥(¢) of
equation (10) as follows (see reference 3):

%=—§ (1 +z ?(d%) (33a)
and, because f(z) on the boundary is
J(2)=¥(¢)— o t+i(6—¢)
where
b—p=e(¢)
then d 4 de\? | [d¥
2
L@ w

The last factor of equation (20) is expressed from equation
(6) on the boundary 2’ =aqe¥** as

dt _2dE1
&~ =D7 ©4)

where
E=| cos®B cosh®yy(cosh?y—cos?)

+sin®g sinhy,(coski*y —sin's) — sin 24 sinh 2y, sin 26 |
D=|cosh 2~,—cosh 2(¥+16)]|

={(cosh 2v,—cosh 2y cos 26)*-} (sinh 2y sin 26)7]*

Finally, combining in equation (21) the factors given in
equations (24), (32), (33b), and (34) yields

ae|_
ae|=?

1
=ABCD 7 14 (35)

where

1
" cosh 2y;—cos 20

[sinh v, sin a(cos c—cos ap)

-+-cosh v; cos a(sin ¢—sin ¢p)]

(b1
B—(l ) =

o=[(-5) (%) "
D=[(cosh 2v,—cosh 2¢ cos 26)*4 (sinh 2 sin 26)%*

E=|:cos"ﬁ cosh?y,(cosh®y— cos?6)

+sin?g sinh?yy(cosh?y—sin’) — sin 2 sinh 2vo sin 20]”

An application of equation (85) for the purpose of illus-
trating the various steps involved in a calculation of the
surface velocity and pressure of the airfoil lattice is given in
appendix E and illustrated in figures 5 and 6. For the sake
of comparison, the single-airfoil case is given in figure 7.



274 REPORT NO. 788—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
[\

i N
AN

-l

=2
=/
——f
\ \
{b) )
lD 20 40 60 80 100 (5] 20 40 60 80 100
53 CL=0; ay=—5.H°% a—aa=0°. £°) CL=1.0; a:=9.70% ai—ay=34.6°.
Cr=0.5; as=L81% ca—cn=16.8. d) Crym044; asm09%°; (n—ean) = 14.6°.
Fi1GURE 5. —Pressure distribution for NA CA 4412 airfoil In 8 lattice arrangement. Stagger angle 8=0°; gap-chord ratlo, 0.968; slope of lift curve %(’:—:‘-3.71.
-2
- \ : (
—_ ]
N T
AN
) ] \[\ \
o S — ——
L/ ) —7- () —
, |
«
/—\
A | / [~
o \\ I~ ] \
\ N
[ (b} —/ Q)
/0 20 40 60 80 /100 Q 20 40 60 80 /00
) Crm0; ar=—8.67% a1—ay=0°. 0) Cr=1.0; as™2.44°; c1—ca=23.53°.
(et e mout IV & G R e w00,

F1GURE 6.—Pressure distribution for NA CA 4412 airfoil in a lattice arrangement, Stagger angle S=45°; gap-chord ratio, 1.096; slopo of Jift curvo %‘—&31.



ON THE PLANE POTENTIAL FLOW PAST A LATTICE OF ARBITRARY AIRFOILS

275

-2 \
-7 \ \\
\ —~——
~—
\\ |~
— ]
(8) — // (c)
/
-/
/_\
\ \
o ~] |~ — \\
(b) (@) —
/ |
o 20 40 60 80 ¥ 100 o 20 4an on 80 100

B G,

& Gt

dce

FI1GURE 7.—Pressure distribution for NAOCA 4412 airfoll. Single-airfofl case, gap-chord ratio, infinite; slope of lift carve ?:—6.95.

Some special results from equation (35) for a lattice of
lines.—In the case of a lattice of straight lines, the 2’-,
2-, and w-planes merge; hence 6=¢=0c and RB=S=a.

From equations (19) and (7) and with a4 S=a,, which is
the angle of attack with respect to the chord,

Ir sin o,
2Vd  (cosh? vy,—sin® g)*

(36)

The lift per unit span on a single member of the lattice is
given by
L=pVT

where p is the air density. The lift vector is perpendicular
to the mean velocity vector (fig. 4). This result is general
and not limited to a straight-line lattice. The lift coeffi-
cient is

oVT 27

1 T
0L=(1_,—=EV=4W2_V? (37)
c :.):pV)

where T'/2Vd is given in equation (36) and c/d can be found
by equation (8).
The local velocity on the surface (equation (35)) becomes

v=V(cos a,-l-% sin a,) (38)

where

_ 1 cos B cos#, sin Ssin @

N (cosh? yo—sin? ﬁ)%-l_ cosh v, + sinh v,

__cos Bsin§ sin B cos §

" sinh v, cosh v,
In the special cases in which 8=0° and 8=90°, the relations
(36) to (38) are simpler.

For stagger angle 8=0° and with d=g,

I' _sine,
2Vg cosh v,
From equation (8),
cosh y,=coth ;—;
and
T .
L=2pV?j tanh 2 sin g

we

29

=1z'pcV2 sin [>23
2¢
The lift coefficient, according to equation (37), is
e
tanhia .
OL=27I' 81N o,

o
D
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For =0°, therefore, the slope of the lift curve is always less
than 27. Note that, for large gap, ¢/¢g—0 and the lift
coefficient is

Cr=2% sin «a,

When the gap g is small compared with the chord ¢,
Ci—>¢ L sin o,
The local velocity at the surface, by equation (38), is
v=V<cos a;+tanh v, cot g sin a,)

This result may be compared with that for the single-line
airfoil (yp= )

v=V{ cos a,—l—cot—g sin a,)

For stagger angle 8=90° and with d=h4,

' _ sine,
2Vh™ sinh v,
From equation (8),
. 7e
sinh 'yo=cot2—h

and
L=2pV%h tan éllj sin a,

tanE

=gpcV? sin a;

Tc
2k

The lift coefficient, according to equation (37) is
wC

tan =5
0L=211'

sin o,

2k

W
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For ﬂ=90‘;, therefore, the slope of the lift curve is always
greater than 2x. The local velocity at the surface is

v=V':cos az+coth v, cot % (0—%) sin a,]

It may be noted in passing that, for c=%h,

CG.=8sin a;
as compared with
Co=2r 9in o,
for the single airfoil.
For the limiting case in which & and d approach «, the
transformation (6) becomes

d _ a?
$=53 (f et e a)

and, with limit ;% —1 and & now variable 2”=2/¢~"

2
r=2"42

which is the familiar Joukowski transformation. If the
variables ¢ and 8 (equation (2)) are introduced, the cor-
responding result is expressed as

§=2a cosh [¢+i(6—B)]

.. d
where the limit, as y,—>w, of 3wa cosh 7, has been put
equal to 1.

LaneLey MEMORIAL AERONAUTICAL LLABORATORY,
NaTioNnaL Apvisory COMMITTEE FOR ABRONAUTICS,
Lanarey F1ernp, VA., November 19, 1943.



APPENDIX A
MAIN SYMBOLS

¢ complex plane of airfoil lattice (z-iy) g lattice spacing, or gap for §=0°
{1y, $a complex planes of airfoil lattice for stagger angles | h lattice spacing, or stagger for §=90°

B=0° and B=90°, respectively (z,+iy:; m:+iy.) | V magnitude of mean of inlet- and outlet-velocity
g complex plane of circular-like contour (ae¥+%) vectors (fig. 4)
2 circle of radius R=ae¥? in z-plane (ae¥vt#) ay angle of attack with respect to z-axis of mean
w circle of radius S=be™" in w-plane (be~71t%) velocity vector
{=w, 2'=b, z=0;, w=b corresponding points a angle of attack with respect to normal to slant line
{=—w, g'=—h z2=—fF), w=—b corresponding points of lattice of mean velocity vector
a, b reference lengths a, @3 inlet and outlet angles of attack with respect to
Yo gap-chord parameter (b=aev) normal to slant line of lattice, respectively
g stagger angle V1, Va magnitudes of inlet and outlet velocities, re-
d lattice spacing, or “slant’’ gap for any value of 8 spectively

APPENDIX B

INVERSION OF EQUATIONS (4) TO (6) AND CHOICE OF COORDINATES

It is desired to find from a given airfoil lattice in the
{-plane the contour defined by ¢(6) in the z’-plane. This
problem corresponds to an inversion of equations (4) to (6)
and can be exactly treated for the cases in which 8=0° and
B=90° (equations (4) and (5), respectively) but an iteration
or successive-approximation method is required for equation
(6). Furthermore, although the parameters g and % are
fixed by the geometry of the lattice, a choice exists in the
definition of the chords and the origin of coordinates. This
choice is discussed following equation (B17).

Btagger angle f=0°—From equation (3), there is obtained

cosh (¢-16) =cosh v, tanh g &1 B1n
Putting $;=u44y; and denoting the real and imaginary
parts of equation (B1) by & and 7, respectively, leads to

cosh v, sinh %r T

cosh ¥ cos =¢,= - o
cosh f; 7;-}-cos 2 U

. 2w
: cosh v, sin i %

4 f=m= 2w 27
cosh 7 z;+cos 7 "

The expressions containing z, and y; in equation (B2) are
considered given since these quantities are known from the
coordinates of the airfoil latlice. If ¥ and ¢ are eliminated
successively,

1 )’_( m ’_1
cos § sin 8/
and , , B3)
b b/} —
<cosh v +<sinh 7)) =t
From equation (B3), there result the following expressions,

which serve to define the function ¥(6) in terms of the airfoil
coordinates:

sin® 6=p+p*+u* |

) (B4)
sinh?® y=—p+- \/P’-l-m’[

where

=% (1—512—7712)

For small values of §, the relation sinh ¢= 5171111 7 ey be used.

{# It is useful for computational purposes to record the real
and imaginary parts of equation (3)

1 p
xl=%r (§ log h—i)

’!/1=‘2%_ (p1—2)

(B5)

where
pi?=(cosh y,+cosh ¢ cos )2+ (sinh ¢ sin §)*

p2=/(cosh yo—cosh ¢ cos 6)2+} (sinh ¢ sin 6)?
277
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sin ¢ == sinh ¢ sin 0
4!
Sin gy——> sinh ¥ sin 0

The angles are to be chosen between —# and =, and the
quadrants may be determined by noting also the relations

cos ¢,— (cosh Yo-+cosh ¥ cos 6)

cos ¢,=i (cosh yy,—cosh ¢ cos 6)
Stagger angle B$=90°.—From equation (5), there is
obtained

sinh (y+i6)=sinh o tan 7 &z (B6)

With {;=ax,-}1y, and the real and imaginary parts of equation
{B6) denoted by & and 7., respectively,

. .2
sinh +, sin —f 2
sinh ¢ cos ==
cosh yz-i-cos 7 :t:,
. f ®7)
. sinh o sinh 7~ 9,
cosh ¢ sin f=n,= 5 o
cosh I 9Ys+-cos T
If ¥ and 8 are climinated successively,
(cos 0) ( 0> =1
(B8)

(aie) +(clig) =

From equations (B8) there result finally the following
expressions, which serve to define the function ¥(6) in terms
of the airfoil coordinates:

cos®=g+ @& ’
sinh*y=—g+¢+&

(B9)

where
]‘ 2
=3 (1—&'—n"

For values of § near £90°, the relation sinh "b_coss 5 may

be used.
It is useful for computational purposes to write the real
and imaginary parts of equation (5)

=2 (41—
(B10)

k(1
vi=— gz (508 %
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where

ps®= (sinh «v,+sinh ¥ cos 6)*+ (cosh ¢ sin §)?
p’=(sinh y,—sinh ¢ cos 8)*+ (cosh ¢ sin 6)*

. 1 .
mn¢3——p—3003h Y sin 8

sin ¢y=— - cosh y sin ¢

The angles are to be chosen between —# and #, and the
quadrants may be determined by noting also the relations

cos ¢3=;];(sinh Yo-+sinh ¢ cos 8)

cos qb..=;1‘ (sinh y,—sinh ¢ cos 6)

Arbitrary stagger angle 8 and choice of coordinates.—
Because of the transcendental nature of equation (6), a
direct inversion expression seems unobtainable; however,
the values (¢, 6) that correspond to coordinates (z, y) may

"be obtained without difficulty by an iterative process. For

this purpose and for the purpose of choosing the coordinate
axes, expansions of z;, 2z, 1, and ¥, in*powers of ¢ are useful.
The following expansions may be readily verified:

d cosh y,-cos 8
Ty, oS B [Iog cosh v,—cos 6
42 cosh vy, cos 8 sinh y,—sin® § +.
Yo fsh’ Yo—cos? §)*

,:I\(Blla)

. . cosh? v,+cog? §
< ¢#sinh v, sin 6 {cosh? ~,— cos® a)z‘l" .

] (B11b)

2 cosh v, sin 0
Yo ll/

d
Yimgg 008 B cosh? ~y—cos? ¢ (Bllc)

d 2 sinh «, cos 8
Y™ =5 S0 B ok oo 0 ¥ (B
Then
Y=tz

~%yr@) (B12)

where
cosh v, cos B8 sin §—sinh v, sin B cos §

k)= cosh? ~,—cos? 4

If the z-coordinate of the straight-line lattice, which is con-
sidered the skeleton of the airfoil lattice, is denoted by a,
then z, is given by the value of x=x,+x; for =0, or

_a cosh y,4-cos 6 . -1 sm 0
=35 (cos g log c0sh 7o—cos @ 0—{—2 gin § tan )
(B13)

and

sezitg PEO) ®14)
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where

cosh v, cos B cos f+sinh v, sin B sin #
cosh? yg—cos? 6

qae)=

__(cosh v, cos g sin §—sin +, sin B cos 6) 2 sin 6 cos §
(cosh? y,—cos? §)?

=F'(0)

In particular, the leading- and trailing-edge points z=z; and
x=2z,, are determined by the values of §=6, and §=0, that

may be obtained from equations (7b). Then,
J )
x; “‘%,‘I‘g‘_ ‘VGO CB15)
where
cos® ﬁ sin® 8
G=¢ (smh" v | cosh? ~,

and o, denotes the leading edge of the line given by ¢=0.
A similar expression holds for z,.
From equation (B12), for constant ,

a%—w(m

=_ 'I'G ©)
In the neighborhood of the leading edge, therefore,
y~L4G(6—8) (B16)

Tor 2, near z,,, there is obtained from equation (B13),

—8,)?
a:o=xo,+(0—01)xo,'+(0 ) ) I
where the following relations are found to hold:
,_d
2“0[ =; [F(B)]a-al—_"o

s @ d
To, = [— G(o)]o-o,‘:—,—r Go
Hence, ;
Zo 0y~ e Go(9—0))*
"Then, from equation (B14),

m—%,m%—%&% V*4(6)

a
~ae Gol— (0—0)*-+7]
It follows from equation (B16) that, for z=x,

0—01‘3 1#
and

d
Y=Yn~_ ¥*Go
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With this value of y,, and equation (B15),

Yor
J';—Tol

=2

If the total ordinate for both upper and lower sides at
r=1x,, is denoted by y,,

Y ~4
3'1—1701

(B17)

This result leads to a simple and convenient way of choosing
axes of coordinates in order that ¥(6) will behave smoothly
at the edges, that is, that the value of ¥ at the leading edge
is approximately the mean of the values of ¥ at nearby
ordinates on the upper and lower surfaces. For a parabola
the latus rectum, or ordinate through the focus, is four times
the distance from the vertex to the focus. Equation (B17)
states that the end point of the skeleton chord should be
approximately the focus of a parabola at the nose.

The scheme for choice of axes is as follows: Locate a point
F near the leading edge where the ordinate through Fis four
times the distance of F' from the leading edge. Similarly
locate a point F” near the trailing edge. The origin of coor-
dinates then bisects the line FF”, which is on the z-axis and
represents the chord of the skeleton line airfoil y=0. (To
the order of approximation employed, the aforementioned
choice of axes coincides with that given for the single wing
gection in reference 1 or 3.)°

Procedure for finding (¥, 6) from (z, y) for arbitrary
stagger angle B.—An iterative procedure is given herein for
finding ¢(6) from (z, y) for arbitrary g, in which the knowledge
of the case for f=0° is employed to help in formulating the
initial approximation. In brief, values of § are obtained for
stagger angle 8=0° for both the airfoil and its line skeleton.
Values of 8 are then found for the skeleton, in the case of
stagger angle 8. These functions permit approximate values
of 6 to be found for the airfoil, for stagger angle 8. Equation
(B12) then enables approximate values of ¢ to be obtained.
These values of (¢, 6) are then readily checked and improved,
if necessary. The steps are as follows:

(1) Choose the axes as outlined and express the airfoil
coordinates in percent chord, where the chord for this pur-
pose is the part of the z-axis intercepted by the airfoil.
Denote the coordinates thus obtained by (z,, ,). Find
k=FF' in percent chord. Find z;—z,,, the distance from the
leading edge to F in percent chord, and denote this value by e.
Obtain the ratio ¢/d, where ¢ means here FF’ and d is the
spacing between corresponding points on adjacent airfoils of
the lattice. Find conversion factor m by

cl
m=21TEZ:-
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(2) Convert coordinates of the airfoil from (=, ;) to

(21- 3: 27 %) as follows:

(3) Find the parameter v, that corresponds to the deter-
mined value of ¢/d for the given value of g from graph or by
calculation (equation (8)). Also find for later use the value
of ¢/g corresponding to this value of v, for 8=0°.

(4) Consider, for this value of v, the two straight-line
cases (=0, B=0°) and (y=0, 8=4); associate values of
0=06, for B=0° with values §=0; for the stagger angle 8 by
referring associated values of 6 to geometrically similar
points of the lines (equation (B13)).

. . - . (e/g)o

(5) Multiply coordinates in step (2) by the ratio ©lds
where the chord-gap values are from step (3) for §=0° and
for =p. Using equation (B4), find values of 8 for g=0°.

(6) With the aid of step (4) obtain approximate values of
65 associated with the values of 8 obtained in step (5). Then
with 6=6;, use equation (B12) to obtain an approximate
value of ¥, where

¢—2ﬂ F(0)

and the leading- and ftrailing-edge values of ¥ are obtained
from equation (B15).
(7) Calculate, from equations (B5) and (B10), exact values

of (.% 2 o %) associated with the initial values of (¢, 6) in

step (6) where x=xz,-+ and y=y;+ ;.

(8) If, on comparison of the coordinates in step (7) with
the coordinates in step (2), it is deemed necessary to approxi-
mate (¥, §) more closely for several of the points (z, ¥), one
procedure is the following: An expression for 7 jf_ ) °an

be found from equations (4) to (6) as

d
d(y+10)
icos BI: sinh (y-+16) | sinh (Y-11)
2% cosh y,-+cosh (¢+160) ' cosh v,—cosh (¥+10)

4 ﬁ[ cosh (y+i6) _  _cosh (y+if)
575 B| G yo-Fsinh (yF7) | s yo—sinh (¢-+70)
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With the notation of equations (B5) and (B10), this expres-
sion may be written

g-_-)
7 (7 e
=cos 8 sinh (Yy-}16) <p_11 el +% e—“*g)

—1 sin B cosh (Y-6) (% e“"f's-i-;l: e""u)

where
. —cee
+oosh ¢ sin g (SLby S04:) ]
+sin g sinh ¢ sin o (2001208 & s &)
(55
and

g=cos f [cosh Y sin 0 <S£;_¢2+00§2_¢a>
—sinh y cos 8 (Sil#f"_ﬁinT#"?)]
—sin B [cosh ¥ cos 0 <c°5 $s 4.008 &4 ¢4>

. . sin ¢; , sin ¢4>:|
+sinh ¢ sin 4 (_m +
The following relation may then be noted:

A(z—}” +iA<2—’;~y>
pt+1ig

8(%5)=(2=2),~(>=3),
2= (), ~(=h),

where the subscripts 0 and 1 refer to the coordinates given
in steps (2) and (7), respectively. If the values (¥, 6)
obtained in step (6) are used, evaluation of equation (B18)
gives values (Ay, A9), and (¥ + Ay, 6+ A6) represents the next

approximation to the desired coordinates. The process in
steps (7) and (8) can be repeated if deemed necessary.

Ap+iAd =~ ®B18)

Let
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APPENDIX C
DERIVATION OF EQUATION (12)

The transformation (equation (9)) from the 2’- to the
z-plane may be rewritten

10"— =f(2)

S
where the complex constants ¢, may be defined as

cu=a'n+'ibn
On the boundaries, 2’ =ae*** and z=ae*t%; hence,

log 2 =¢—yy+i(0—9)
and
=/ a, by .
y— %=;(R—, cos n¢-+py sin nqb) (C2)

where

R=ae¥

With ¢ considered as a function of ¢ denoted by ¥(¢), the
coefficients in equation (C2) are obtained as

2
2=t L ¥($) cosng do

Substituting equation (C3) in equation (C1) yields
R» e in$

o= [T SEL 4 (©4)

For E
2

summed and

<1, the geometric series in equation (C4) can be

&= [TewEnds (Cs)

which can immediately be expressed as in equation (12).
For computational purposes, equation (12) may be
separated into real and imaginary parts. Let f(z)=p+ig

and z=z-+14y (where, for example, in the zeroth approxima-
tion z=b, y=0). Then,

== [T G as

=% [Te@ s

N1=% cos qS—I—% sin ¢—1

where

N2=9—3 sin ¢—1% cos ¢

pi— [ "e@ sinns s (@) D=1-2 (% cos g+ 4sin )+ Z ¥
e 1 [ and the integrations can be conveniently performed by
F_;J; T(¢)e dg Simpson’s rule.

APPENDIX D

TRANSFORMATION FROM z-PLANE TO w-PLANE

The linear fractional transformation

_aztb
cz—l—d

on which the derivation of equation (13) is based, has the
following well-known properties:

(1) When z traverses a circle C,, w traverses a circle C.

(2) Two points w;, and uy inverse with respect to a circle
O, correspond to two points z and z; inverse with respect to
the circle C;.

(3) The anharmonic ratio of four points is preserved; that
is, if 2y, 23, 23, and 2, correspond to wy, ws, ws, and w;,

(B1—24) (22— 23) _ (wr—wy) (w—w3)
(a1—2)(ma—2z)  (wr—ws) (ws—wy)
For the desired correspondence it is known that four points

wy=>b, wy=—0>0, and their inverse points 103=ST3; w‘=—bS’ are

fo correspond to 2;=f;, zz=—4; and their inverse points

A
2= B‘l’ 2= 33
used to solve for the radius S and that can be expressed by
equations (15) and (16). When the radius of the circle in
the w-plane has been determined, property (3) can again be
used by replacing—say, w; by w and 2, by z. This procedure
will yield a result that is equivalent to equation (13).

Property (3) yields a relation that may be
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APPENDIX E
OUTLINE OF CALCULATION PROCEDURE

(1) List airfoil-section coordinates in percent chord.

(2) Choose axes (appendix B, paragraph following equa-
tion (B17)).

(3) List stagger angle g and find v, and value of ¢/d for
the skeleton line lattice (table I, fig. 2, and equation (8)).

(4) Find (¢, 6) (appendix B).

(5) Find ¢(¢) (equation (10)) by method given in appendix
‘of reference 3.

(6) Plot ¢ against ¢ where ¢=0--c.
(equation (11)) and B=ae'.

(7) Find complex constants $; and B, (equation (12) and
appendix C).

(8) Find constants cosh 71, 71, S, and K=k, +k; (equa-
tions (16), (15), and (14)).

(9) Find complex constant é=|s|er (equation (26)) and
real constant A (equation (27)). Also obtain functions
m(¢) and u(¢) from equation (29).

(10) Find ¢ and, in particular, ¢, (equation (30)).

(11) Evaluate factors B, C, D, and E (equation (35)).

(12) Evaluate factor A in equation (35), first choosing
the angle of attack « as indicated in the following paragraphs:

The lift coefficient is as in equation (37)

Find constant ¥,

1 T __d Vi, —Vi,
C=4 aava—2s VvV

Here c/d refers to the value of z/d at 0 percent chord minus
z/d at 100 percent chord. By using equation (19) for T/2Vd,
C, may be expressed as

p=H sin (a+t17) E1)
where
A cos & \*, ( sin oo \7I%
H=4 3[ cosh ’n) +<sinh 71)’]
and
_ - sin 0o cosh Y1
ﬂ—t&n ! cos Uoﬁnh ‘)/1>

This relation may be used to find « for any desired value
of Cp, and it is further noted that a=—7 is the angle of zero
lift.

The “ideal” angle of attack, introduced by Theodorsen, is
defined for a thin section as the angle of attack for which a
stagnation point exists not only at the sharp trailing edge
but also at the sharp leading edge. For thick airfoils, the
ideal angle of attack is defined in the same manner (the
pressure difference at the leading edge vanishes) although
the point that is considered the leading-edge point is not
precisely defined. If this point is taken to be the intersection
of the z-axis with the airfoil leading edge, the ideal lift and
ideal angle of attack are found as follows: Let o; be the value
of ¢ corresponding to the leading-edge point. The quantity

J%%I in equation (24) (or the factor A in equation (35))

vanishes for o=0,. The relation that gives the value of
the ideal angle of attack a=cayis then

gin @ cosh v, sin o,—sin o
cos @ sinh ; COS g3~ CO8 0y

and the ideal lift coefficient, from equation (E1), is

dl1 1
OLI= —4; j— Ccos § (0’1‘—0‘0)

where
1 2 . 1 3
J’=|:cosh 71 €08 5(«1+ao)] + [smh ¥ 8in §'(¢Tl+00):]

(13) The surface velocity ratio »/V is now found from
equation (35) and the (mean) superstream pressure is found
from Bernoulli’s equation as

i3

The angle through which the stream is turned may be found
from equation (23).

A remark may be inserted here regarding an inverse
calculation procedure. Instead of starting with a given
lattice, it may be convenient to start with given function
¥(¢), (quantity ¢ as a function of ¢) and given paramoters
7o and B. Then both the lattice arrangement and the flow
properties follow uniquely and, in this way, systematic
families of lattices can be studied.
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